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The Exascale Dream

On September 28, 2008, the U.S. agency DARPA (Defense Advanced Research
Projects Agency) published a document called
“ExaScale Computing Study: Technology Challenges in Achieving Exascale Sys-
tems” (http://www.cse.nd.edu/Reports/2008/TR-2008-13.pdf),
where a goal of building a supercomputer capable of performing 1018 float-
ing point double precision arithmetic operations per second (1 ExaFlop/s) was
stated with the year 2016 as the target. Now, in 2017, the most powerful su-
percomputer in the U.S.A. is still below 30 PFlop/s.

China entered the exascale game by upgrading Tianhe (Milky Way) com-
puter in 2013: Tianhe-2 performance (as of June 2013) was 54.9 PFlop/s peak
and 33.86 PFlop/s Linpack, thus being slightly more than twice as powerful as
the second computer in the Top500 list, Titan (U.S.A.).

The next step forward was made by China in 2016 by Sunway TaihuLight
with 125 PFlop/s peak, 93 PFlop/s Linpack, the first computer with the peak
computing power over 100 PFlop/s.

At the moment of writing this document (October 2017), Sunway Taihu-
Light remains to be the most powerful supercomputer of the planet, followed
by Tianhe-2 that has just recently been upgraded to 95 PFlop/s peak. Third
place (by Linpack performance) is occupied by Piz Daint (Cray XC50, installed
in Switzerland, 25.3 PFlop/s peak, 19.59 PFlop/s Linpack) that pushed Titan
back to the 4-th place in June 2017.

Not too much is known about Chinese exascale plans, some experts speculate
that the first exascale computer could be Tianhe-3 sometime in 2020.

On 29 July 2015, U.S. President Obama signed an executive order creating
a National Strategic Computing Initiative (NSCI). As a part of NSCI, the Exas-
cale Computing Project (ECP), a collaborative effort of two U.S. Department of
Energy organizations - the Office of Science (DOE-SC) and the National Nuclear
Security Administration (NNSA), aims at building an exascale supercomputer
in early 2020’s.

The U.S.A. are preparing to get back the HPC leadership by two systems
built under U.S. DOE CORAL pre-exascale initiative that should be operational
soon (2018?): Sierra (120-150 PFlop/s), Summit (about 200 PFlop/s), both
based on IBM Power9 chips and Nvidia Volta architecture GPU’s.
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Another U.S. project within the CORAL pre-exascale initiative, Aurora will
be based on Intel chips. The original plans (180 PFlop/s, delivery in 2018, based
on Intel 10 nm third generation “Knights Hill” Xeon Phi processors) have just
recently been radically changed (one can even say the original plan was cancelled
and replaced by another one). The new Aurora with the expected delivery in
2021 would be the first U.S. exascale supercomputer with the computing power
1000 PFlop/s.

The change of plans might be connected with a slow-down in Intel’s tran-
sition to 10 nm technology; it is also possible that it has been found that 10
nm is not enough for the exascale, and the plan has been postponed with the
prospect of 7 nm process in 2020. The DOE “rebaseline” review also announces
that the new Aurora will be “exciting with many novel technology choices that
can change the way computing is done”, without specifying the “novel technol-
ogy choices”. It is speculated that this might mean the future Intel’s silicon
photonics and 3D XPoint memory.

The European Exascale Dream

On March 23, 2017, as a part of celebrations of the 60-th aniversary of the
Treaties of Rome, Europe entered into the exascale race by adoppting a decla-
ration, signed by ministers of 7 EU countries (FR, DE, IT, L, NL, P, SP)
(see the reference “EuroHPC declaration”
in https://ec.europa.eu/digital-single-market/en/news/eu-ministers-commit-digitising-
europe-high-performance-computing-power),
that calls, among others, for

• “The procurement processes for the acquisition of two world-class pre-
exascale supercomputers preferably starting on 2019-2020, and two world-
class full exascale supercomputers preferably starting on 2022-2023”, and
for

• “The development of high-quality competitive European technology, its
optimisation through a co-design approach and its integration in at least
one of the two exascale supercomputers”.

The Declaration also “invites all Member States and Associated Countries
to join EuroHPC”.

While the use of terms like “world-class”, “preferably”, “high-quality”, “com-
petitive” might seem funny in this context, it is not easy at all to understand
what the Declaration says. Especially the sequences “The procurement pro-
cesses for the acquisition” and “high-quality competitive European technology”
are very vague.

I will understand that, in this context, “acquisition” does not mean “buying”
(outside Europe or from a subsidiary or a representation of a non-European
company), but making, building or manufacturing in Europe.

2



I wil also understand that, in the context of supercomputing, “technology”
to be integrated into at least on exascale supercomputer is “processors”. An-
other system that is so important that its source is reported when describing a
supercomputer is an interconnect fabric. However, it is common to report either
just processors or processors+interconnect when describing the technology that
has been used (not just the interconnect).

“European technology” might also be a complicated term in the same sense
as asking whether Nvidia GPU’s are U.S. technology, being fabricated by TSMC.

In this way, I will understand the Declaration so that it describes

• the minimal goal: an exascale supercomputer that is built in EU, and uses
parts (processors etc.) bought outside EU

• the maximal goal: an exascale supercomputer that is built in EU, and
uses processors and an interconnect fabric designed and manufactured in
EU as well

In some sense, the Declaration goals are very simple: neither an exascale
supercomputer can be built by a consortium of universities and supercomputing
centers, nor (within given time limits) a new company can be created to fulfill
such tasks.

In the U.S.A., supercomputers like the future Summit, Sierra, Aurora, and
existing Titan, Sequoia, Cori, and others will be or were made under a con-
tract of federal agencies with private companies like Cray, IBM, Intel, Nvidia.
Programs like Exascale Computing Project support the contracts by providing
results of research by academic and federal institutions.

In Europe, the only company that is able to build “pre-exascale supercom-
puters preferably on 2019-2020, and full exascale supercomputers on 2022-2023”
is the French company Bull (a subsidiary of Atos). Similarly as U.S. Cray, Bull
builds supercomputers, has its own interconnect product, but does not make
silicon chips.

As of July 2017 (see www.top500.org), the most powerful supercomputer
built by Bull was Mistral (at DKRZ - Deutsches Klimarechenzentrum) with 3.96
PFlop/s peak and 3.01 PFlop/s Linpack, and there are 9 further Bull computers
in Top100 (for Czech reader - Salomon in IT4I Ostrava has 2 PFlop/s peak and
1.46 PFlop/s Linpack, about one half of Mistral). Thus, the Declaration calls
for building two computers that are 250-times (!) more powerful than Mistral
within 6 years. Even though Bull is working on new and larger projects, this is
a really challenging goal for Bull (and Europe).

Concerning the maximal goal, the only EU company in processor design has
been ARM, based in Cambridge, UK. However, ARM is now brexiting, being,
moreover, sold to Japanese group SoftBank ... (Hermann Hauser, one of the
founders of Acorn Computers, Ltd., the principal root of ARM, said about the
deal: “This is a sad day for ARM and a sad day for technology in the UK” -
my comment: and for Europe as well). There is no other company in Europe
having actually experience with the top level processor design.
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Full-EU processor making is even less obvious. The recent state-of-the-art,
the 12-16 nm process, is mastered just by Intel, TSMC, and Samsung, and the
U.S. DOE “rebaseline” report suggests that even 10 nm might not be enough
for a straightforward path to exascale.

The most advanced European chip maker is the Franco-Italian ST Micro-
electronics (even though it is registered in Netherlands with headquarters in
Geneva), who mastered making 12” silicon wafers and 32 nm chips. However,
the FinFET technology used for 22 - 12 nm process is quite different from 28/32
nm, and it does not seem likely that chips based on 32 nm process could be used
to build an exascale computer.

Not all EU initiatives of the past finished by full success, (e.g. 1), and the
maximal goal does not seem to be sufficiently supported by European industrial
environment.

This is, by the way, reflected by the panel discussion of leading European
HPC authorities during the March 23 Digital Day, youtubed at
https://www.youtube.com/watch?v=2y5LWCZLluc&list=PLyMUk47rPuqozitX6N52khWAgEFqkgZ8n
(video length 1:58:11)
and reported, e.g., in
https://www.top500.org/news/europe-sets-exascale-supercomputing-goal-amid-
divisions-on-how-to-achieve-it/.

As two extreme opinions, I can quote:
Mateo Valeto, director of Barcelona Computing Center, said: “If we don’t

develop hardware, we will always be in the second division” (remark: he didn’t
point out who in Europe will develop the exascale hardware).

On the other hand, Thomas Schulthess, the director of Swiss National Su-
percomputing Center (actually hosting the 3rd most powerfull supercomputer
Piz Daint) thinks that the best path to maintain scientific leadership is “rather
than focusing on building an exascale system, we should focus on the scientific
questions that we want to solve, and use technology to solve that problem” (i.e.,
why to focus on something we are not able to make).

Supercomputer performance: peak, Linpack, and
HPCG

The easiest way of assessment of the computing power of a supercomputer is
to add computing performances of its processor chips. This measure is called
the (theoretical) peak power; the plot of peak powers of Top10 supercomputers
(but ordered by their Linpack performance) is as follows

1Lisbon Strategic Goal 2000: “The (European) Union has today (March 23, 2000) set
itself a new strategic goal for the next decade: to become the most competitive and dynamic
knowledge-based economy in the world” (see www.europarl.europa.eu/summits/lis1 en.htm,
Art. I.5)
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Figure 1: Peak computing power, Top10

The peak power does not reflect performance of a computer in practical
computations, where communication and data exchange among processors play
an important role. More realistic assessment is obtained if the performance is
measured when a supercomputer solves a practical problem that involves both
computation and communication. Since large problems solved on supercomput-
ers are very often based on Linear Algebra, especially large systems of linear
equations, and since Gaussian elimination is the fundamental method of solv-
ing linear systems, Jack Dongarra et al. developped a benchmark that is a
part of the Linpack package, and represents an implementation of the Gaussian
elimination. Since 1979, when the first Linpack manual had been published,
the benchmark became the most frequent tool for ranking supercomputers and
measuring their computing power.

The following plot repeats the peak performances of Top10 supercomputers
(red) with their Linpack performances (green).
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Figure 2: Peak and Linpack computing power, Top10

The Linpack benchmark is popular not only because it is a practical prob-
lem, but also because Linpack results correlate well with the peak power, being
usually 50-75 % of the peak. One can even say that Linpack is a way of selling
the peak power values. The Linpack is the basis for the most popular supercom-
puter ranking, Top500, and it is assumed that a true exascale supercomputer
will be the one with Linpack performance of 1 EFlop/s.

However, there has been and there is growing feeling among many researchers
that the Gaussian elimination (Linpack) is not any more the best measure of
the computing performance, see Appendix for a more detailed discussion. This
is why, in 2014, Jack Dongarra, the principal co-author of Linpack, and his col-
legues M. Heroux and P. Luszczek, came with an alternative benchmark HPCG
(High Performance Conjugate Gradient) that is a standardized implementation
of the Conjugate Gradient Method, which (either directly or in a form of its
generalizations, e.g., different Krylov subspace methods) is an iterative method
of solving sparse systems of linear equations used for simulation of physical pro-
cesses described by PDE’s, e.g., in the fluid mechanics (meteorology and weather
forecasting, aerodynamic studies and virtual wind tunnels, hydrodynamics and
oceanology, etc.), mechanical strength and deformation (simulated car crashes),
heat conduction and equilibria, combustion and explosion mechanics, and many
other applications.

The following plot shows the performance of the Top10 supercomputers
(June 2017) in the HPCG benchmark (blue), compared with the peak (red)
and Linpack (green) performance, all data in PFlop/s.
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Figure 3: Peak, Linpack, and HPCG computing power, Top10

Well, perhaps you do not see the blue columns - HPCG results are so low
that we are hardly able to see the corresponding “columns”. The next plot
shows the HPCG results (June 2017) magnified about 100-times in the vertical
direction:
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Figure 4: HPCG computing power, Top10

The following observations are immediate:
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• Compared to the peak and Linpack performance, the HPCG results are
worse than poor - no one of the systems with the peak performance in
the range 10-125 PFlop/s is able to run at more than about 0.6 PFlop/s
(see the red horizontal line representing one petaflops barrier). We dream
about exascale, but the practical computation is not yet in the petascale
era.

• HPCG results are not in correlation with the peak/Linpack performance
- they are comparable for systems having the peak power different by one
order of magnitude

The following plot is even more interesting: it shows the HPCG performance
expressed as a fraction of the peak power (i.e., the practical “efficiency” of a
supercomputer):
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Figure 5: HPCG efficiency, Top10

Again, the following observations are immediate:

• The efficiency graph presents even better view of the poor HPCG per-
formance of the Top10 supercomputers: with notable exception of the
Japanese K, they are using less than 2 % of their peak power.

• it seems that the HPCG efficiency is inversely proportional to the number
of cores - among Top10, by far the best efficiency has the old Japanese
K with only 8 cores per socket, while Sunway TaihuLight with 260-core
processor Shen Wei is by far the worst; see also the next figure.

When looking at the data of supercomputers that appear both in the Top500
(www.top500.org/lists/2017/06/) and the HPCG lists
(www.hpcg-benchmark.org/custom/index.html?lid=155&slid=291) (altogether
63 computers), we can find 2 systems with the efficiency over 5.0 %, 1 over 4.0
%, 6 in the range 3.0-3.99, and 10 between 2.0 and 2.99 %, and 7 below 1%,
while the remaining 37 systems are between 1 and 2 %.
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The next plot shows the HPCG efficiency related to the number of cores per
processor socket for the intersection of the Top500 and the HPCG lists.
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Figure 6: HPCG active cores, Top10

As suggested by the figure, it seems that there is an upper bound (the green
curve) to the HPCG efficiency; most of the computers are well below the green
curve (mostly small systems with simpler processors having 6-18 cores), but
no supercomputer is substantially above the curve. Taking into account small
number of supercomputers that are near to the green curve, we have to be careful
when drawing conclusion, but the conjecture that the efficiency decreases with
the number of cores per socket seems to be well supported. Another support for
the sonjecture follows from more detailed analysis of the reasons of poor HPCG
efficiency, see the next section of this report.

But the most striking fact that follows from the HPCH results is the fol-
lowing: the product of the HPCG efficiency and the number of cores can be
understood as the average number of cores per socket that are doing useful
work when the computer runs the HPCG benchmark. The following table lists
all entries of the intersection of the Top500 and HPCG lists that have the aver-
age number of active cores higher than 0.4 when running HPCG benchmark:
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T500 CG Computer Peak Linpack HPCG Eff C Active
1 3 Sunway TaihuLight 125.4 93.015 0.4808 0.4 260 1.04

34 15 SORA-MA, Fujitsu 3.5 3.157 0.1102 3.2 32 1.024
7 5 Oakforest-PACS, Fujitsu 24.9 13.555 0.3855 1.5 68 1.02

55 24 Plasma Simulator, Fujitsu 2.6 2.376 0.0732 2.8 32 0.896
6 6 Cori, Cray 27.9 13.832 0.3554 1.3 68 0.884

39 19 ITC Nagoya, Fujitsu 3.2 2.910 0.0865 2.7 32 0.864
123 34 Oakleaf-FX, Fujitsu 1.1 1.043 0.0565 5.0 16 0.8
80 27 JURECA, T-Platforms 1.7 1.425 0.0683 3.8 12 0.456
8 1 K computer, Fujitsu 11.3 10.510 0.6027 5.3 8 0.424

90 32 iDataPlex DX360M4, IBM 1.5 1.283 0.0615 4.2 10 0.42
14 26 Marconi, Lenovo 10.8 6.223 0.0686 0.6 68 0.408

where
• T500 is the Top500 rank
• CG is the HPCG rank
• Peak, Linpack and HPCG are the corresponding performances in PFlop/s,
• Eff, the HPCG efficiency, is the ratio of the HPCG and the Peak performances,
• C is the number of cores per socket, and
• Active is the HPCG average number of the active cores per socket

The last table makes us even to think about practical use of multicore and
many-core architectures.

Extrapolating the data, we can expect that the future exascale supercom-
puter will have (unless a quite new architectonical approach is adopted) the
HPCG efficiency of 0.5-1 % or, in other words, the effective HPCG computing
power 5-10 PFlop/s.

Why HPCG results are so bad?

There are three key components of the Conjugate Gradient algorithm: the dot
(scalar) product of two vectors, multiplying of a large sparse matrix and a vec-
tor, and preconditioning (which is essentially solving a system of linear equa-
tions with a special sparse triangular matrix by back substitution). All three
problems have very low arithmetic intensity (the average number of arithmetic
operations that can be performed for one byte of data moved from the memory
to a processor), also called the flop:byte ratio.

The dot product (
∑n−1

i=0 xiyi) has arithmetic intensity 0.125: moving xi and
yi into a processor for some i allow us to perform one multiplication and one
addition (usually combined into one FMA - fused multiply add - operation).
When working with double precision floating point numbers, moving xi and yi
operates with 2 × 8 bytes, and 2/16 = 0.125.

When performing a matrix-vector product (with DP elements), then even
if we succeed to store the vector in a cache, each 8 byte element of the matrix
moved to the processor allows us to perform just two arithmetic operations:
multiplying the matrix element by certain vector element, and add the product

10



to an accumulator. Two flops per at least 8 bytes give the arithmetic intensity
at most 0.25.

The analysis of the preconditioning is more complex, but the results are
similar.

Let us now check how many arithmetic operations could be performed when
the top level processors are running HPCG benchmark. The first column of
the next table lists three of the top processors: Intel Xeon Phi v200 (“Knights
Landing”), Nvidia Tesla V100 with the Volta GV100 GPU, and the Chinese
processor Shwn Wei 26010 of Sunway TaihuLight supercomputer. The Xeon Phi
processor has two memory systems: it has the on package “near” MCDRAM
memory of the capacity 16 GB and the memory bandwidth about 480 GB/s, and
it can be connected to at most 384 GB of DDR4 DRAM by memory channels
of the bandwidth about 120 GB/s. The Tesla V100 accelerator comes with 16
GB of fast HBM2 DRAM with the memory bandwidts up to 900 GB/s, the
information about possible high volume lower speed DDR DRAM memory is
not available. The Shen Wei has just “slow” memory channel of the bandwidth
about 120 GB/s.

Assuming that we are using the processors to solve a problem of the arith-
metic intensity 0.25 (i.e., 1 Flop per 4 bytes, like a matrix-vector product), the
third column shows how many Flop’s can be executed, taking into account the
product of the arithmetic intensity of the problem and the memory bandwidth
of the processor. The fourth colum is the peak computing power of the corre-
sponding processor. It is clear that, when running HPCG, the memory interface
brings only a small fraction of the data flow that would be needed to keep all
cores of the processor busy all the time. The last column, the upper bound to
the HPCG efficiency, is the ratio of the previous two columns.

Memory Enough Computing
Processor bandwidth data for power (peak) Efficiency

[GB/s] [GFlop/s] [GFlop/s]
Xeon Phi v200 600 150 3000 5 %
(fast memory)
Xeon Phi v200 120 30 3000 1 %

(DDR4 DRAM)
Tesla V100 900 225 7800 2.9 %

Shen Wei
26010 120 30 3000 1 %

The table fully explains the poor behavior of the recent supercomputers
running the HPCG benchmark. It is important to realize that high bandwidth
memories like MCDRAM of “Knights Landing” and HBM2 of Tesla V100 are
not too big, in both cases 16 GB (and perhaps 32 GB in the future), while
typical supercomputer nodes have often well over 100 GB of memory per pro-
cessor. Since both HPCG rules and practical consideration forces us usually
using (almost) all available memory, the average memory bandwidth in such a
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case would be substantially lower than 600/900 GB/s of the table, resulting in
the efficiency around 1 %.

There is another possible source of low usage of the computing power of
processors, namely the communication among processor nodes that also might
cause idle states of processing units. However, at least in the case of simpler
problems like HPCG, the interconnect bottleneck is not too severe and the
memory bandwidth is the principial source of the HPCG inefficiency. See, e.g.,
a simplified analysis in Luděk Kučera: On architecture for the future petas-
cale computing, to appear in the proceedings of ParCo’17 conference, see also
http://kam.mff.cuni.cz/~ludek/Parco.pdf.

How frequent is HPCG-like behavior

Supercomputer behavior in the two benchmarks described above could hardly be
more different: the Linpack performance is close to and well correlated with the
peak power2, while HPCG performance is a very small fraction of the peak only
a does not seem to be correlated with the peak at all. The principal question
now is:

How frequent are programs that use supercomputer computing power as ineffi-
ciently as the HPCG benchmark?, or, perhaps better,

How much supercomputer time is spent by running programs that behave as
inefficiently as the HPCG benchmark?

In other words, is the HPCG benchmark just a rare particular case that does
not reflect the typical behavior of practical supercomputer programs, or (as
intended by Dongarra et al.) it represents the usual behavior of most (or at
least large part) of supercomputer programs?

It follows from the previous section that, for supercomputers with the recent
top level processors, low arithmetic intensity immediately implies very inefficient
use of the computing power.

The arithmetic intensity is precisely known just for certain very simple prob-
lems, e.g., 0.125 for a dot (scalar) product of vectors, 0.25 for a matrix-vector
product, but results that precisely determine arithmetic intensity of more com-
plex problems are very rare.

However, it is my understanding that all programs, approximating PDE’s
describing physical processes in 3D by methods of Linear Algebra, are base on
matrices of incidence of grids that are used to discretize the physical space, and
such grids have very local structure, i.e., any grid node has only a small number
of neighbors, are based on manipulation with sparse metrices that has typically
very low arithmetic intensity.

One support for this opinion can be found at the folowing figure, which
has appeared in many papers and reports, and which I traced to a report of
Lawrence Livermore Lab about 10 years ago:

2The average of the ratio Linpack/Peak is 72% for Top10 and 66 % for Top500
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Figure 7: Arithmetic intensity of problems

The figure explicitly shows that simulations based on solving PDE’s have
typically low arithmetic intensity (the figure does not indicate more precise
values). My ParCo article (http://kam.mff.cuni.cz/~ludek/Parco.pdf) also ref-
erences several of many papers, complaining about low arithmetic intensity of
problems in sparse Linear Algebra.

Currently, I am cooperating with Department of Meteorology MFF UK try-
ing to assess the arithmetic intensity of WRF model (Weather Research and
Forecasting). We conjecture that the computational kernel of the model has
low arithmetic intensity as well - and meteorology oriented programs are very
frequent users of the supercomputer time.

The impact of my opinion is, of course, negligible. However, during the
ParCo conference mentioned above, I met with Jack Dongarra; his opinion has,
I am sure, very heavy impact. I asked him explicitly about his estimation of
how much supercomputer time is spent, say, in the U.S., running problems that
are as inefficient as the HPCG benchmark. And he answered:
“I would say most of the time.”
And he added:
“If someone could do better ...”.

In his view, thousands of hours of supercomputing time are spent by routine
simulation programs in car and aerospace industry, defense research and other
fields and behave in a way very similar to HPCG benchmark.

Exascale equivalent supercomputer

Motto: Technology always develops from the primitive, via the complicated, to
the simple.
Attributed to Antoine de Saint-Exupéry in the English Web, even though I found the original

citation neither in the French Web not in Saint-Exupéry’s texts

The facts introduced in the previous questions induce a natural question:
why to follow the way to a supercomputer with 1000 PFlop/s peak, but the prac-
tical performance of about 5-10 PFlop/s (i.e., 0.5-1 % of the peak)? Wouldn’t it
be better to build directly a cheaper and simpler machine able to run HPCG and
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other “most-of-the-time” programs at the same speed as the potential exascale
supercomputer, no matter what is its theoretical computing power?

The vision of the present paper is a simple and relatively cheap 10-15 PFlop/s
peak computer, built about the same time as the first (Chinese or U.S.) true
exascale computer sometime in 2020-2022 which would prove to be computation-
ally equivalent (=as fast as) the the exascale machine when running not only
HPCG benchmark, but also a large range of practical programs in meteorology,
aerodynamic, mechanic and explosion simulation, and similar fields. I will call
such a computer exascale equivalent3.

A big advantage of the notion of exascale equivalent supercomputer is that,
as I will try to argue in Appendix B, such a system could be based on full-
European 32 nm processors (thus fulfilling the second goal of the March 23
(2017) Rome declaration), while the latest news about the projected U.S. Aurora
supercomputer might suggest that even 10 nm process would not give processors
powerfull enough for Exascale (and it is generally assumed that the present 14
nm is not sufficient).

Appendix B describes an architectonical outline of a potential 32 nm proces-
sor with a relatively low peak power 400 GFlop/s that, however, cold be used
up to 100 % even when running a program with arithmetic intensity as low as
0.25 (e.g., sparse matrix operations)4. About 1500 such processors would be
sufficient to win June 2017 HPCG list, and about 12,500-25,000 such “slow”
but cheap and simple EU-made chips would give an exascale equivalent super-
computer5. Nevertheless, I have to recall that “simple” is used with respect to
the silicon logic of the processor, while the memory interface of such processors
need to be enhanced in a way that is on the edge or slightly beyond the present
state of the art.

Let me finish by quoting Mr. Roberto Saigri, Eurotech CEO who, during
the panel discussion at Digital Day in Rome on On March 23, 2017, compared
EuroHPC to the US Apollo program:

“They had a dream and we need another dream for high perfomance computing”.

During 45 years since Apollo 17, no other men flew to Moon, but the near
space is full of meteorological, communication, and other types of satelites and
permanently populated by at least 2-3 men or women.

The true Exascale is an Apollo-like dream,
our dream is making anonymous low-flying exascale-equivalent working horses.

3Let me recall that an exascale equivalent computer is not meant as a universal computer
to run all kinds of program. It is specialized to execute codes that, I (and Jack Dongarra)
believe, use most of the global supercomputer time, but there are problems and programs
of high arithmetic complexity (e.g., Linpack), for which the notion of exascale equivalence
is not appropriate. It is only a question whether such arithmetically complex problems are
sufficiently frequent to justify building an extremely expensive true exascale computer.

4Note that Intel Knights Landing has effective computing power about 150 GFlop/s for
this arithmetic intensity, the newest Nvidia Volta GPU offers not more than 225 GFlop/s.

5Note that about 110,000 of the newest 12 nm Nvidia Volta GPU’s would be needed to get
1 EFlop/s peak.
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Appendix A
Direct and indirect solving of sparse systems of
linear equations

In computer simulations of physical processes, partial differential equations de-
scribing a given physical process are solved using discrete approximations in
essentially the following way: a discrete grid is embedded into the physical
space, and we are interested in values of certain physical quantity in the grid
nodes. Partial derivatives in the grid nodes are approximated by linear func-
tionals depending on the value in a given node and its near neighbors. In this
way we get a system of linear equations, where non-zero elements of the rows of
the matrix of the system correspond to neighbors of the given node of the grid.
It is clear that the number of neighbors is usually small (quite often 7, 19, or
27 for 3D grids due to using of 7-, 19-, or 27-point stencil).

Imagine that we are solving a system of linear equations that would fit
into 1 PB of memory of a supercomputer (a typical value for the recent Top10
systems). Even in the case of 27 non-zeroes per a row of the system matrix, one
row represent 27 × 8 bytes of data - I will suppose that one row occupies (at
most) 256 bytes. Thus, the memory of the supercomputer makes it possible to
store a sparse matrix with about 4 × 1012 rows.

If such a system is solved by Gaussian elimination, we eventually reduce the
system matrix to a triangular matrix. Unfortunately, even if we start with a
very sparse matrix, the resulting matrix of the Gaussian elimination is usually
very dense, and such a matrix would have 0.5× (4× 1012)2 = 8× 1024 non-zero
items - too much for recent supercomputers. The largest matrix that could be
solved by a direct method would have the order of about 2.8 × 106.

If a > 0, the solution of an equation ax = b can be found as the minimum
of the function f(x) = 1

2ax
2 − bx, because f ′ = ax− b, and the minimum of f

occurs if f ′ = 0.
Similarly, if A is positive definite matrix, then the solution of Ax = b is

the vector x, which minimizes the functional 1
2x

TAx −Ax. The minimum of
the functional can be found with almost no extra memory, using, e.g., Steepest
Descent Method or, preferably, Conjugate Gradient Method (CGM) or another
Krylov subspace method. This is why CGM and similar methods are often used
in HPC simulations.

Appendix B
Example: A case study of a 196 GFlop/s lowain
processor

The term lowain processor will be used to refer to a processor designed so that
it can fully use its peak computing power even when running a problem of low
arithmetic intensity. As it will be clear from the following text, the present
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state of art allow us to build a lowain processor with the computing power of
several hundreds of GFlop/s. As an example of feasibility of such a design, the
following architecture is presented.

Let us study a potential lowain processor with the target arithmetic intensity
0.25 and the memory bandwidth 1.6 TB/s. The value of the bandwidth is
substantially beyond the state of the art; the highest memory bandwidth has
presently Nvidia Tesla V100 - about 900 GB/s. However, it is conceivable that
such a chip could be made in the near future. The values give the effective
computing power for the given arithmetic intensity equal to 400 GFlop/s.

Let us assume that the instruction flow would be pipelined so that one FMA
(fused multiply add) operation is performed per cycle and core. Since FMA
is counted as 2 arithmetic operations, one core performs 4 GFlop/s. The last
value means that we would need 100 cores to get 400 GFlop/s.

Thus, I assume that the processor has a matrix of 10 × 10 = 100 scalar
cores, which gives the computing power (at 2 GHz clock) equal to 2×2×100 =
400 GFlop/s. It will be convenient if the cores work as vector units for lower
precisions (two single precision or four half precision operations like FMA per
cycle), but this feature is out of the scope of our problem.

Nvidia 12 nm Volta GV100 GPU has about 800 mm2 die and more than 2500
FP64 cores, so one FP64 core occupies about 0.32 mm2. Let us assume that
the lowain processor is fabricated by 32 nm process that is mastered in Europe
(ST Microelectronics). Extrapolating one Volta core area to 32 nm would give
0.32 × (32/12)2 = 2.3 mm2 = (1.5 mm)2.

It is therefore feasible to assume that one core would occupy the area 1.5 ×
1.5 = 2.25 mm2. The 10× 10 matrix of cores would occupy 15 mm × 15 mm ≈
225 mm2. I will suppose a processor die of the size 20 mm × 20 mm = 324 mm2,
about 56% occupied by the core matrix, the remaining 44 % given to memory
buffers and controllers.

Recall that the necessary memory bandwidth needed for 400 GFlop/s at the
arithmetic intensity 0.25 is 1600 GB/s = 12800 Gbit/s.

One possibility of getting high memory bandwidth is to have processor cores
on the same die as the memory. However, one processor has usually 10’s or
more frequently 100’s of GB of memory, while standard DRAM chips have at
most 2 GB, and, moreover, the manufacture process is different for logic silicon
and for DRAMs.

We will investigate different bandwidth of data lines, connecting memory
chip(s) with the corresponding processors: 1.6 Gbit/s (slower DRAM data line),
2.4 Gbit/s (faster DRAM data line), 3.2 Gbit/s (very fast DRAM data line),
32 Gbit/s fast serial links (see, e.g., Virtex UltraScale+ XCVU13P offers 128
GTY transceivers 32.75 Gbit/s, page 11 of
www.xilinx.com/support/documentation/data sheets/ds890-ultrascale-overview.pdf):
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chip size 20x20 mm

ball pitch 0.2 mm

4032 data balls

(just data balls)

core size 1.5x1.5 mm

Figure 8: Lowain processor ball array

Data Line Bandwidth [Gbit/s] Number of Needed Data Lines
1.6 8000
2.4 5400
3.2 4000
32 400

Taking into account the Xilinx chip, one could believe that obtaining the
necessary memory bandwidth by building 400 fast serial links on a chip is tech-
nically feasible. However, necessary transceivers (both within the chip and
outside on the board) would complicate the design, and hence “slow” data lines
connecting the chip directly to DRAMs might be an easier solution.

One possibility is that the bottom part of the processor holds a ball array
of either 64 × 64 = 4096 balls (for 3.2 GHz) or 74 × 74 = 5476 balls (for 2.4
GHz) or 90 × 90 = 8100 balls (for 1.6 GHz). Assuming the footpring of the die
20 mm × 20 mm, this would correspond to the ball pitch 0.3 mm (for 3.2 GHz)
or slightly more than 0.2 mm (for 1.6 GHz), which is essentially within state
of the art: e.g., ST Microelectronics makes chips with a (small) ball array with
the pitch 0.2 mm; the problem for the lowain processor would be the number of
balls. The table summarizes the values:

Bandwidth [Gbit/s] Lines Ball Array Pitch
1.6 8000 90 × 90 0.22 mm
2.4 5400 74 × 74 0.27 mm
3.2 4000 64 × 64 0.31 mm

Another possibility is that that the ball array is just below the circumference
of the chip, see Fig. 8 for 3.2 GHz lines (where gray squares represent cores):

Finally, let us consider a solution inspired by Intel’s EMIB (Embedded Mem-
ory Interface Bridge), where the die is placed on an interposer, and data lines
are located on the boundary of the die square:
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size 20x20 mm

pitch 10 micrometers, 2000 lines on one side @ 1.6 GHz

pitch 20 micrometers, 1000 lines on one side @ 3.2 GHz

die

interposer

Figure 9: Lowain processor memory bridge

The boundary of a 20 mm × 20 mm die has the length 80 mm, and therefore
we would need the pitch 10 µm for 8000 data lines at 1.6 GHz, or the pitch 15
µm for 5400 data lines at 3.2 GHz, or the pitch 20 µm for 4000 data lines at 3.2
GHz.

The Intel patent document U.S. 9,240,377 explicitly mentiones such data
lines with the pitch 14 µm running at 1.6 GHz, which gives hopes that the
desired memory bridge could be constructed, see the table

Bandwidth [Gbit/s] Lines Pitch
1.6 8000 10 µm
2.4 5400 15 µm
3.2 4000 20 µm
1.6 U.S. 9240377 14 µm

2 GB 3.2 GHz DDR4 DRAM chips can now be taken as the top of the
state of the art. If 4000 data lines of the 3.2 GHz memory interface of the
lowain chip is connected with 4000/16 = 250 DDR4 DRAM 2GB chips of the
x16 architecture, we will get a processing node with the computing power 400
GFlop/s (for arithmetic intensity ≥ 0.25) and DRAM capacity 500 GB. About
2500 such chips would be sufficient to overcome 1 PFlop/s HPCG barrier, and
12500-25000 chips to build an EXEQ (exascale equivalent) supercomputer.

As already pointed above, about one half of the lowain processor die would
be occupied by memory controller and buffers. The reason is simple: very large
number of the memory-processor interface data lines and memory chips around
a processor would result in high and non-uniform length of the data lines which
in turn leads to long and non-uniform latencies.

The present mechanism of caching data and pre-fetching them to a cache
from external memory chips is sophisticated, but rigid and it is often quite
difficult (or impossible) to adapt it so that data are delivered to arithmetic
units “just in time” for processing.

I am sure that a smooth data flow could be guaranteed only by a user pro-
grammable memory controller that controls the memory-processor data flow.
The controller runs under supervision of a user program (co-algorithm) that
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cooperates with the main code that is executed in the processor to obtain in-
telligent prefetch of the data that are based on the user’s understanding of the
main algorithm.

The present solution, where user can only give prefetch hints to the compiler,
hoping that the optimized compiler will choose an appropriate method, seems
to be too rigid to guarantee the best prefetch strategy that is needed for efficient
use of the memory-processor interface6.

Memory controller design is a subject of forthcomming research and more
detailed explanation would be outside of the scope of the present paper. I
am sure that that the memory controller architecture and algorithms represent
the critical part of the lowain processor design that would require most of the
research activity.7

It is clear that many variations could be designes by extending the param-
eters and architecture of the lowain chip memory interface to the limits of the
present technology.

Finally, let us summarize the parameters of one possible embodiment of a
400 GFlop/s lowain processor (the die area about one half of that of Nvidia
Volta GV100 and about 57 % of Intel KNL, 32 nm process instead of 12-14 nm,
the logic occupying just about 56 % of the chip area):

CMOS process 32 nm
Die size 20 mm × 20 mm
Die area occupied by the cores 15 mm × 15 mm
Die area occupied by the cores 56 %
Number of scalar cores 100
Processor clock frequency 2 GHz
Computing power 400 GFlop/s
Computing power for arithmetic intensity 0.25 400 GFlop/s
Memory bandwidth 1600 GB/s = 12800 Gbit/s
Memory data line frequency 3.2 GHz
Number of data lines 4000
Variant 1: ball array pitch (see Fig. 8) 0.2 mm
Variant 2: memory bridge pitch (see Fig. 9) 20 µm
Chips to win June’17 HPCG 1500
Chips for 1 PFlop/s HPCG 2500
Chips for exascale equivalence 12500-25000

6Supported by my experience with programming Intel KNL’s at Cori supercomputer
7I have submitted a GAČR research proposal directed to memory controller architectures

and prefetch co-algorithm design.
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